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Abstract 

Introduction: Treatments of retinoic acid, a metabolite of vitamin A (VA) are shown to 

induce hyperlipidemia in humans and animals, which may influence adiposity.  To 

understand the role of VA in weight management, two studies, one in animals examining 

effects of VA combined with high-fat diet (HFD) on body mass (BM) gain and the second 

in humans comparing dietary VA between participants who were overweight/obese and 

who had and had not lost 10% of body weight by consuming a hypocaloric, low-fat diet, 

were conducted.  

Methods: Male Sprague Dawley rats were fed a HFD containing sufficient VA (HF-VAS) 

or a HFD deficient in VA (HF-VAD) for eight weeks. BM, liver mass, white adipose mass, 

brown adipose mass and plasma glucose were measured.  The groups were compared 

with student's t-test.  For the second experiment, participants (51.9 ± 8.8 yrs, 35.0 + 4.5 

kg/m2, 94.7% white, 59.6% female, 100% non-hispanic) in a lifestyle intervention were 

categorized as successful weight losers (loss of > 10% body weight) or unsuccessful 

weight losers  (loss of < 10% body weight) after 6 months of treatment on a hypocaloric, 

low-fat diet. Dietary intake, assessed by three, 24-hour dietary recalls was collected at 6 

months.  Dietary VA was compared between the groups using analysis of covariance. 

Results: In the animal study, significant differences were detected in end day BM, liver 

mass and white adipose mass between the HF-VAS and HFD-VAD groups.  No 

significant difference was detected in dietary VA consumed between participants who had 

successful 10% weight loss and those who did not have successful weight loss at 6 

months. 
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Conclusion: Results from the animal experiment indicate that VA plays a role in adiposity 

in subjects consuming an obesogenic diet. No difference was detected in VA intake 

between subjects who successfully lost 10% weight and those who have not.  This 

indicates dietary VA is not related to successful weight loss on a hypocaloric, low-fat diet.   

Additional studies are needed to understand the role VA plays in obesity development.  

Also, further investigation on how VA intake while consuming a hypocaloric low fat diet 

may affect weight loss is needed. 
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1.1 Background  

Obesity, defined as excessive body fat content indicated by a BMI ≥ 30 kg/m2, 

continues to be a nationwide problem with one third of Americans considered to be 

obese1.  This epidemic predicts the development of various metabolic diseases2, 

resulting in higher mortality rates and higher costs in health care3.  Aside from this, obesity 

has been linked to decreased productivity in the workplace, which can indirectly increase 

healthcare costs3.  The increases in mortality rates and costs of health care have become 

an urgent problem, which finding solutions must become priority.   

Obesity is thought to be caused by positive energy balance, meaning that energy 

intake is greater than energy output4.  Both genetic and environmental factors contribute 

to the development of obesity and its associated chronic metabolic diseases. Several 

genes, such as leptin and its receptor, responsible for monogenic obesity have been 

identified5. On the other hand, over nutrition seems to be an obvious cause of obesity 

development. However, the role of each micronutrient has not been revealed. Previous 

research indicates that VA may also play a role in the development of obesity6.  This 

thesis includes two parts. The first one aims to investigate the contributions of VA intake 

on obesity development in rats fed a high-fat diet (HFD). The second portion studied the 

effects of VA intake on body weight alterations in participants during a hypocaloric, low-

fat diet.  The project seeks to answer the following questions:  Does the presence of VA 

in the diet have an effect on weight gain while subjects are consuming a high-fat 

obesogenic diet?  Is there a significant difference in the amount of dietary VA consumed 

by partcipants who successfully lost weight while consuming a hypocaloric, low-fat diet 

compared to those who did not in a clinical weight loss trial?  The two experiments use 
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different models to answer the questions.  The first experiment uses an animal model 

looking at weight gain on a high-fat diet, while the second experiment uses a human 

model looking at weight loss on a hypocaloric, low-fat diet.   
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2.1 Vitamin A (VA) and its homeostasis 

2.1.1 The discovery of VA and provitamin A 

VA, all-trans retinol ((2E, 4E, 6E, 8E)- 3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-

enyl) nona-2,4,6,8-tetraen-1-ol)),  is a lipid soluble vitamin which exists in multiple 

isomeric forms7.  All of these forms contain a 20 carbon structure with a methyl substituted 

cyclohexenyl ring and a tetraene side chain differing in the molecules attached to this side 

chain7.  It was first identified in 1910s and later elucidated in 1930s as a lipid derived 

factor essential for the growth of animals8,9.   

VA activity was observed when rats fed a synthetic diet with lard or olive oil 

extracted with ether as the only fat source would lose weight and then die.  In contrast, 

rats given certain lipid derived factors from foods such as eggs and butter survived and 

began to grow again10.  Later on, its molecular identity as retinol was determined. VA 

activity can be derived from molecules that can be converted into retinol11.  In the diet, 

these molecules are retinol esters (animal sources) and provitamin A carotenoids (plant 

sources)12. The majority of VA physiological activities are mediated by RA13.  Retinol (an 

alcohol) is first reversibly oxidized into retinal (an aldehyde), and then irreversibly oxidized 

into RA. It has been recognized for its role as essential micronutrient for the general health 

of the individual.  In the body, VA is essential for vision, growth, skin development and 

cell differentiation14. 

2.1.2 The discovery of carotenoids 

Carotenoids were discovered as a result of the search for a medicinal agent, an 

anthelminthic to rid the body of parasitic worms, especially from the intestine15. Credit 
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for this discovery goes to Heinrich Wilhelm Ferdinand Wackenroder15.  He published the 

results of his examination of carrots, with one of the purposes of that research being the 

search for the presence in the juice of the carrots of an effective anthelminthic15. This 

prompted Wackenroder to undertake chemical analysis of the juice in the attempt to 

identify the substance that was medically active15. The results of this work were 

published in 183115. 

In humans, three carotenoids (beta-carotene, alpha-carotene, and beta-

cryptoxanthin) have VA activity, and these and other carotenoids can also act as 

antioxidants10.  In the body, provitamin A carotenoids are cleaved to form retinal, which 

is then reduced to retinol12. 

2.1.3 VA metabolism and its active metabolic intermediates 

Retinol, the least potent form of molecules with VA activities, contains a hydroxyl 

group at carbon-15.  Retinol can act as a precursor for the more active forms of molecules 

with VA activities.  When retinol is oxidized to retinal the molecule contains an aldehyde 

group, which is  further oxidized to RA containing a carboxylic acid group7.  VA activity 

can be derived from molecules that can be converted into retinol11. The majority of VA 

activities are mediated by RA13.   

Enzymes responsible for the reversible oxidation/reduction reaction of retinol to 

retinal are termed dehydrogenases and exhibit properties as an alcohol dehydrogenase 

or a short- chain dehydrogenase reductase16. Enzymes facilitating the irreversible 

oxidation of retinal to RA are classified in the aldehyde dehydrogenase family16.  

Cytochrome P450 hydroxylase 26A (CYP26A) mediates modification of RA molecules to 

facilitate RA disposal. It is the primary CYP26 enzyme expressed in the liver, contributing 
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the largest amount of activity in the clearance of RA from humans17. This gene irreversibly 

oxidizes RA into more polar metabolites for excretion17. 

2.1.4 The conversion of carotenoids to VA 

Of all known carotenoids, β-carotene is believed to be the most important in human 

nutrition18.  The key step in the VA biosynthetic pathway is the oxidative cleavage of β-

carotene into two retinal molecules by the enzyme β,β-carotene-15,15′-

monooxygenase18.  Subsequent oxidation yields retinoic acid which can then act as ligand 

for nuclear transcription factors.  Beta-carotene can also undergo eccentric cleavage 

which can occur enzymatically or non-enzymatically19. This produces beta-apocarotenals 

and beta-apocarotenones, whose functions in mammals are unknown19. 

2.1.5 Digestion, absorption and storage of VA and carotenoids 

Dietary  VA comes from retinyl esters (animal sources) and provitamin A 

carotenoids (plant sources)20.  Carotenoids consist of 40 carbons, conjugated double 

bonds, and may contain 1-2 cyclic structures at the end of their chain7.  Pancreatic 

lipases hydrolyze retinyl esters into retinol and free fatty acids which then are absorbed 

into enterocytes.  Retinol is then re-esterified into retinyl esters to be packaged in 

chylomicrons for delivery to other parts of the body through lymph circulation first and 

then blood circulation20.  Provitamin A carotenoids are enzymatically cleaved to produce 

retinal which is then reduced into retinol12,21.  This retinol produced is then converted to 

retinyl ester so that it can be incorporated into chylomicrons22.  Dietary fat is essential 

for optimal absorption of VA because it acts as a facilitator for incorporation into 

chylomicrons23.  Foods rich in VA include liver, milk, eggs, and those rich in provitamin 



www.manaraa.com

8 

 

A include carrots, sweet potato and dark leafy greens10.  The RDA for VA has been 

established for the different life stages to prevent deficiency and toxicity24.  See Table1 

below for RDA of VA.  

 

Table 1 Recommended Daily Allowance of Vitamin A based on gender and age  

Life 
Stage 
Group 

Children 
1-3 yr 

Children 
4-8 yr 

Males 9-
13 yr 

Males 14-
70 yr 

Females 
9-13 yr 

Females 
14-70 yr 

VA 
(μg/day) 

300 400 600 900 600 700 

 

  

 Physiological VA status is regulated through a network of enzymes and proteins 

which facilitate the transport, productions and catabolism of retinoids25. In this network, 

retinol is reversibly converted into retinal, and retinal is irreversibly converted into RA26.  

RA has been involved in the regulation of the expression levels of the enzymes in this 

system 13. However, it is important to recognize that some of the physiological functions 

of retinal (such as vision) cannot be replaced through RA treatments27.   

2.1.6 Mechanisms of VA and its metabolites functions 

2.1.6.1 The vision cycle 

Retinol metabolite, 11-cis-retinal, plays a critical role in vision.  In the eyes, 11-

cis-retinal is bound to opsin to form rhodopsin in rods.  When light enters the eyes, 11-

cis-retinal isomerizes to all-trans-retinal and dissociates from opsin.  This results in a 

nervous signal along the optic nerve to the brain.  A series of enzymatic reactions 
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converts all-trans-retinal back to 11-cis-retinal, which can then rebind to opsin to form 

rhodopsin to complete the vision cycle10 

2.1.6.2 Mechanism of Retinoic Acid (RA)-mediated transcription 

 RA is found in multiple forms, with all-trans RA and 9-cis RA being significant in 

the body.  RA regulates gene expression mainly through activating two nuclear receptor 

families, RA receptors (RARα, β and γ) and retinoid X receptors (RXRα, β and γ)12,26.  

RARs and RXRs are considered part of the nuclear receptor family, which are ligand-

activated transcriptional activators critical for physiological processes28,29.  RARs are 

activated by all-trans RA while RXRs are activated by 9-cis RA26.  Activation occurs 

when RAR/RXR hetero-dimers or RXR/RXR homo-dimers bind to the RA responsive 

elements at the promoters of their downstream targeted genes30,31.  It has been 

suggested that RXR can act as a universal dimerization partner for other families of 

nuclear receptors such as peroxisome proliferator activated receptors (PPARs), liver X 

receptor (LXR), thyroid hormone receptor (TR), and vitamin D receptor (VDR), 

indicating a complex transcriptional network which allows RA, to exert its biological 

activity.32. 

 Chicken ovalbumin transcription factor II (COUPTF-II) nuclear receptors have 

DNA-binding abilities, meaning it can activate or inhibit gene expressing  depending on 

the presence of ligands, corepressors or coactivators33.  Deletion of COUPTF-II can 

alter processes such as angiogenesis and cardiovascular development, and therefore 

can be lethal33.  It has been reported that COUPTF-II acts constitutively but its activity 

can be modulated by the presence of RA34.  RA has been reported to release COUPTF-
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II from the auto-repressed conformation, possibly affecting some of the metabolic 

activities regulated by COUPTF-II34. 

 Hepatocyte nuclear factor 4 alpha (HNF4α) is a transcription factor responsible for 

several liver specific functions such as gluconeogenesis and lipid and bile synthesis35.  

It has been shown to direct 11% of genes actively transcribed in pancreatic islets36.  

Compared to the liver, it is expressed in lower amounts in other tissues such as 

intestine and kidneys37.  The importance of the role it plays is indicated by the 

development of hepatic steatosis in HNF4α deficient mouse livers35.  In humans, 

mutations in the HNF4α genes leads to maturity onset of type I diabetes, characterized 

by pancreatic β-cell dysfunction evidenced by loss of insulin secretion in response to 

glucose38.  In hepatocyte, HNF4α maintains differentiation state, phenotype and also 

directs energy metabolism38.   

It has been observed that RA produced in intestines was found in the portal 

system of the liver39, which indicates that plasma RA levels may play a role in signaling 

the body’s retinoid status13.  It has been demonstrated that retinoids regulate the 

expression of genes involved in hepatic glucose and lipid metabolism40,41. 

2.2 Hepatic metabolism of VA 

The liver plays an essential role in energy metabolism. This is in part attributed to 

the regulation of expression levels of hepatic genes involved in glucose and lipid 

metabolism in response to hormonal and nutritional stimuli42.  Obesity and other metabolic 

diseases such as diabetes have been linked to abnormal glucose and lipid metabolism in 
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the liver43.  It is clear that metabolic abnormalities significantly impact hepatic functions 

and, thereby, contribute to morbidity. 

2.2.1 Role of liver in the regulation of metabolic homeostasis  

The liver is the most important site for retinoid storage in the body, accounting for 

uptake of 66-75% of all dietary retinoid absorbed in the intestines44.  It accounts for 70-

80% of all retinol binding protein (RBP) in circulation, making it the major site for RBP 

synthesis and secretion22.  RBP maintains circulating levels of retinol to assure 

continuous delivery to target tissues under conditions of retinoid sufficiency45.  The three 

RARs (α, β, γ) and three RXRs (α, β, and γ) are all expressed in the liver, making it an 

important target organ for retinoid actions46. 

2.2.2 Role of the liver in VA homeostasis and its metabolism 

The majority of dietary retinol absorbed by enterocytes is secreted into the 

lymphatic system in the form of retinyl esters in chylomicrons, which contain dietary 

lipids, mostly triglyceride (TG) and cholesterol22.  In circulation, 66-75% of chylomicron 

retinyl ester is removed by the liver while the remaining is removed by extrahepatic 

tissue such as adipose tissue, skeletal muscle, heart, spleen and kidney22.  Most retinyl 

ester present in chylomicrons remains as the particles become chylomicron remnants in 

a process involving the lipolysis of TG and recruitment of apolipoprotein E (apo E) to the 

particles22.  It is thought that chylomicron remnants are internalized solely by 

hepatocytes47. 

After chylomicron remnant retinyl esters have been up taken by hepatocytes, the 

retinyl esters are hydrolyzed by retinyl ester hydrolases48.  In a retinoid sufficient state, 



www.manaraa.com

12 

 

chylomicron remnant retinol is then transferred to hepatic stellate cells for storage49,50.  

In contrast, when dietary retinoids are insufficient more of the recently ingested retinol is 

secreted into circulation bound to RBP instead of being transported into storage. 

Circulating retinol bound to RBP enters and leaves the liver multiple times before 

its elimination from the body.  This process is called retinol recycling51.  Studies in 

humans show that 14.3 mg/day of retinol passes through plasma compared with a 

disposal rate of 1.14 mg/day, which indicates that a large portion of retinol take up in 

organs and circulating tissues is recycled back into plasma and that only a minor portion 

is converted to active metabolites or degraded52.  It is thought that this process of retinol 

recycling provides the liver an ideal means to sample and adjust the concentration of 

retinol available in plasma for peripheral tissue53.  Total body retinol pool size can be 

estimated with deuterated retinol dilution technique and calculation of the change in 

total body retinol pool size can be achieved with the paired deuterated retinol dilution 

technique54,55. 

Hepatocytes play an essential role in hepatic retinoid metabolism and storage, 

accounting for some retinoid storage and facilitating mobilization of retinol from the 

liver22.  These cells also contribute to retinoid activation to RA, to RA catabolism and to 

the excretion of retinoid catabolic products22.  They have relatively high concentrations 

of retinol, retinyl ester, RBP, retinyl ester hydrolases, and enzymes that convert retinol 

to RA22. 

Mobilization of retinoids from the liver to target tissues in circulation is regulated 

in a process involving RBP56.  RBP has a molecular weight of 21 kDa and has a single 
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binding site for one molecule of all-trans retinol22.  This protein is synthesized in 

hepatocytes, but its expression has also been detected in other tissues, such as kidney 

and adipose tissue22.  When retinol binds to RBP, the retinol-RBP complex enters the 

blood stream for transport to target tissues and its concentration is maintained at 2-3 

μM.  This complex circulates in the blood as a 1:1 molar complex with thyroxine 

hormone carrier transthyretin, making the complex less susceptible to filtration by the 

kidney57,58 

2.2.3 Role of VA in the metabolism of glucose in the liver 

Elevation of hepatic VA content was observed in diabetic patients as early as 

193759.  Later, it was observed that rats fed a VA-deficient (VAD) diet had depleted 

hepatic glycogen content60.  This study concluded that the depletion of hepatic glycogen 

was caused by the reduction of glycogenesis from trioses, rather than directly from 

glucose60.  The depletion in VAD rats was not due to reduced energy intake, as pair fed 

rats with equal energy intake had higher hepatic glycogen content60.  When rats were 

fed a diet with excess VA for 2 days, a dramatic increase in fasting hepatic glycogen 

content was observed61. 

It has been observed that insulin resistant humans and animals have elevated 

plasma RBP 462.  When mouse plasma RBP4 level was manipulated, the result was 

altered insulin sensitivity and expression levels of hepatic gluconeogenic genes63.  A 

reduction of plasma retinol and RBP levels has been observed in patients with type I 

diabetes and also in streptozotocin-induced diabetic rats64,65.  Insulin sensitivity was 

improved in insulin resistant ob/ob mice with administration of retinal66.  
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Glucose is differentially metabolized in cells depending upon hormone and 

nutrition statuses67.  For it to be utilized, it must undergo phosphorylation to become 

glucose 6-phosphate (G6P) through the action of hexokinases in the first step of 

glycolysis.  In mammals, hexokinase is referred to as glucokinase (GK)68,69.  Mutations 

altering the GK enzymatic activity are associated with maturity onset diabetes of the 

young70.  Regulation of hepatic GK activity is accomplished by its binding to GK 

regulatory protein, phosphorylation by protein kinase A, and interaction with cytosolic 

GK-associated phosphatase71-73.  Long term regulation of GK activity is achieved 

through transcription of GK gene (Gck)74.  Gck is differentially regulated by an upstream 

promoter in pancreatic β-cells and a downstream promoter in hepatocytes75.  In the 

liver, the cycle of fasting and re-feeding alters Gck expression. However the same cycle 

does not alter Gck expression in pancreatic β-cells74.  It has been observed that in rat 

liver, Gck mRNA is induced by insulin and suppressed by glucagon76-78.   

In rat hepatocytes, all-trans RA has been shown to induce Gck expression 

without any additive effects on insulin mediated induction79,80.  On the other hand, our 

research group has reported that retinoids synergize with insulin to induce Gck 

expression in rat hepatocytes40.  In the liver of VAD rats, Gck activity and mRNA levels 

were lower compared to VAS controls.  Also, treatment with RA induced Gck mRNA in 

rat hepatocytes40. 

Under conditions where dietary glucose is not available, the liver will produce 

glucose through gluconeogenesis.  Phosphoenolpyruvate carboxykinase (PEPCK-C), 

the first rate-limiting enzyme of gluconeogenesis, converts oxaloacetate into 

phosphoenolpyruvate in the presence of GTP81.  PEPCK-C expression and activity has 
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been detected in the liver, kidney and adipose tissues, where PEPCK-C may control 

gluconeogenesis, glyceroneogenesis and cataplerosis81-84.  PEPCK-C is regulated by 

the transcription of its gene Pck1 in different physiological conditions81-83. The hepatic 

expression of Pck1 is induced by glucagon and suppressed by insulin85, meaning the 

liver can produce glucose under fasting conditions.  RA has been reported to stimulate 

Pck1 expression, also two RA response elements (RARE) have been identified at Pck1 

promoter in hepatoma cells86-88.  Lipophilic extract from rat liver was found to induce 

Pck1 expression and attenuate insulin-mediated suppression of its transcription89.  

These lipophilic molecules were later identified as retinoids due their effects of insulin-

induced Gck expression40.  Of the two previously identified RARE in Pck1 promoter, the 

proximal one was responsible for mediating the retinoid effect in hepatocytes86,87,90,91.   

2.2.4 Role of VA in the lipid metabolism 

The liver and adipose tissues, in response to dietary intake and stored energy, 

regulate TG and fatty acid (FA) homeostasis in the body92,93.  FAs are stored in adipose 

tissue as TGs in the postprandial stage94.  TG in chylomicrons and very low density 

lipoprotein (VLDL) is converted to free fatty acids (FFA), monoglycerides and 

diglycerides through hydrolysis by lipoprotein lipase (LPL) for entry and storage in 

adipose tissues.  Under fasting or starvation condition, FFAs are released from adipose 

tissue though lipolysis by lipases in adipocytes95.  These FFAs can then be used by 

heart, liver and skeletal muscle for energy.  In the liver, FFAs can be used for 

ketogenesis and glycerol for gluconeogenesis.  Other organs, like the brain, can then 

utilize ketone bodies and glucose for energy. 
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Instances of metabolic abnormalities are often associated with changes in 

hepatic lipid metabolism.  For instance, patients or animals with obesity and type 2 

diabetes were reported to have excessive hepatic lipogenesis43.  Insulin stimulates 

lipogenesis and inhibits lipolysis to regulate FA and TG homeostasis96.  Patients and 

animals with obesity and type 2 diabetes experiencing hyperinsulinemia were 

determined to have excessive hepatic production of FAs and TGs.  This happens 

because the liver can stimulate the expression of lipogenic genes, a process mediated 

by sterol regulatory element binding protein 1c (SREBP-1c), which is an insulin-induced 

transcription factor97,98.  In the liver of mice, activation of liver X receptor (LXR) and RXR 

induced the expression of the SREBP-1c gene (Srebp-1c)99.  In Srebp-1c promoter, the 

insulin responsive elements have been identified as two liver X receptor elements 

(LXRE) and one sterol regulatory element (SRE)100.  Retinoids induced SREBP-1c 

expression and maturation, resulting in activation of the promoter activity of fatty acid 

synthase gene (Fas)101,102.  In rat hepatocytes, retinoids synergized with insulin to 

induce expression of Srebp-1c mRNA in a dosage and time dependent manner41.  The 

two LXREs responsible for the insulin induced Srebp-1c expression in rat hepatocytes 

were determined to be RAREs in its promoter41,100. 

Patients with acne treated with isotretinoin (13-cis RA) developed 

hypertriglyceridemia103.  Healthy subjects given isotretinoin had elevated plasma apo C-

III level.  In adult hepatocytes, apo C-III was induced RXR specific agonist104.  Patients 

with acute promyelocytic leukemia were observed to have gained weight and elevated 

levels of plasma TG and cholesterol after treatment of all-trans RA105,106.  Rats 

consuming a VAD diet for 3 months after weaning were reported having lower plasma 
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TG and cholesterol, hepatic phospholipid contents, and hepatic synthesis of FA and 

phosphatidylcholine compared to controls fed a VAS diet107.  This may be due to the 

combination of VA deficiency and hypoinsulinemia, because insulin secretion is 

impaired in rats fed a VAD diet108.  Rats fed with all-trans RA and 13-cis RA and with 9-

cis RA and RAR specific agonist induced hypertriglyceridemia109,110.   This is attributed 

to the elevated production of VLDL in the liver and reduced uptake of TG in adipose 

tissue and skeletal muscle.  In vitro experiments show that rat hepatocytes treated with 

RA increased the incorporation of lipid precursors into FA and TG.  Reduced TG uptake 

was associated with reductions of LPL activities in adipose tissue and skeletal 

muscle109.  Elevated plasma TG was reported for Sprague-Dawley and Zucker diabetic 

fatty rats treated with a RXR specific agonist111.   This was attributed to a decrease in 

LPL activities in adipose tissue and skeletal muscle111.  The reduction was likely 

mediated by a RXR-induced protein responsible for posttranslational processing of PLP 

since there were no effects of RXR activation on the mRNA level of LPL111.  It is 

important to note that the role of hepatic lipogenesis in the increase of plasma TG was 

not clearly defined in these studies.  In obese and diabetic mice, it has been reported 

that RXR sensitized insulin and reduced TG levels112.  All-trans RA has been reported 

to repress obesity and insulin resistance through activation of PPAR β/δ and RAR113.  

Hepatic lipid metabolism was altered in mice with liver specific knockout of RXRα114.  Of 

note, RXRα knockout mice have elevated expression of RARβ and RARγ, which implies 

the changes of RA signaling as RARβ can be up-regulated with treatment of RA115. 

 These observations imply the roles of VA in lipid metabolism, probably through 

multiple mechanisms12.  Treatment of RA may have (1) increased lipogenesis in the 
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liver, (2) reduced PLP activity in skeletal muscle and adipose tissue, and/or activated 

signal transduction pathways and transcription of RAR/RXR downstream targeted 

genes116.  The two RAREs/LXREs on Srebp-1c are mediating insulin response and 

sensing nutrition VA status, meaning the retinoid and insulin signaling pathways can 

converge on the same sites in Srebp-1c promoter and synergize to induce its 

expression, resulting in the expression of its downstream lipogenic genes12.  Because 

SREBP-1c is the dominating regulator for hepatic FA biosynthesis, it has been 

concluded that one of the ways that retinoids regulate lipid homeostasis is through 

regulation hepatic expression of Srebp-1c 12,97.  Looking at the effects of RA on insulin-

mediated expression of Srebp-1c and Pck1 in rat hepatocytes, it has been suggested 

that RA may be one of the possible factors leading to hepatic insulin resistance12,41,91. 

2.2.5 Role of VA intake in obesity development 

Previous research indicates that VA plays a key role in the development of obesity. 

Patients with promyelocytic leukemia treated with all-trans RA had observed increases in 

BM and plasma cholesterol105.  Excess of isotretinoin (13-cis RA) given to patients for the 

treatment of acne vulgaris has been shown to elevate blood TG and liver enzymes without 

any change in dietary intake117,118.  It has been demonstrated that Zucker fatty rats fed a 

VAD diet gained significantly less weight than their VA sufficient counterparts6.  It has 

been observed that patients with metabolic syndrome had significantly lower levels of 

plasma VA than their healthy counterparts119.  Interestingly, research has demonstrated 

the use of VA in the treatment of obesity.  Obese mice treated with all-trans RA 

experienced weight loss and improved insulin responsiveness as a result of the all-trans 
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RA inducing the expression of PPAR β/δ and RAR target genes involved in regulating 

lipid homeostasis113.    

The impact of VA on the mechanisms of obesity development is not well 

understood.  A greater understanding of the role of VA in energy metabolism and obesity 

development may lead to more effective treatments for obesity and metabolic diseases. 

2.3 Methods to assessing VA 

2.3.1 Measuring VA in plasma 

 Methods have been established to quantify VA in plasma.  Plasma samples first 

undergo an extraction process to remove the fat soluble vitamins and carotenoids.  This 

extraction provides an extract suitable for reversed-phase liquid chromatography 

analysis with absorbance detection120.  Below is Table 2 for normal retinol plasma 

levels. 

 

Table 2 Reference Intervals for normal retinol plasma levels in humans based on age 

Life Stage Reference Interval 

0-1 month 0.18-0.50 mg/L 
2 months-12 years 0.20-0.50 mg/L 
13-17 years 0.26-0.70 mg/L 
18 years and older 0.30-1.20 mg/L 
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2.3.2. Measuring VA in the tissues 

 For establishing tissue concentration of VA, there is far less data than for plasma 

concentration10.  Research indicates greater concentrations in tissue than plasma in 

rats10.  For instance, it has been reported that normal rats have tissue concentrations 

ranging 40-580 pmol/g (kidney, liver, lung and pancreas) compared to a plasma 

concentration of 8-16 pmol/ L10. 

2.4 Role of western diet in the development of metabolic diseases 

2.4.1 High-Fat Diet (HFD) 

2.4.1.1 The definition of HFD and current status in population 

With one third of Americans being considered obese, obesity has reached 

epidemic level in the United States1.  This is a concern of public health as obesity leads 

to the development of various metabolic diseases2, which result in higher mortality rates 

and higher costs in health care.      

One of the dietary styles contributing to the obesity epidemic is the Western Diet 

(High-fat content), which is characterized by a high intake of red and processed meats, 

eggs,  refined grains and sugars, and energy derived from fat, mainly saturated fatty 

acids, which can be as high as 35% of energy intake121,122.  The Dietary Guidelines 

published by the USDA recommends that dietary fat provide 20-35% of energy, 

emphasizing consumption of n-3 polyunsaturated fatty acids (PUFA) while limiting the 

intake of saturated and trans fatty acids123.  It has been reported that the fat intake of an 

average adult is 33% of energy intake124.  However, it is important to note that adults 
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may consume more total kcal than recommended so fat intake would still be higher than 

recommended.   

2.4.1.2 Studies using HFD 

The consequences of consuming a HFD have been documented in human and 

animal subjects.  The HFD pattern has been positively related to BMI and has been 

linked to increased risk for type 2 diabetes, coronary heart disease and colon cancer122.  

The intake of a HFD not only increases risk for these diseases, but also reduces 

functions of the immune system121.   Additionally, high fat diet consumption may induce 

inflammatory pathways in individuals121.     

The detrimental effects of HFD consumption have been studied in animals 

extensively. For example, mice fed a HFD (45% energy from fat) for 12 weeks 

developed obesity, hyperinsulinemia, hyperglycemia, and hyperleptinemia125.  High fat 

feeding alters mechanisms for digestion and absorption.  Mice fed a HFD demonstrated 

significant differences in transcript levels of pancreatic enzymes compared to 

controls125. Sprague Dawley rats placed on a HFD for 10 weeks demonstrated greater 

oxidative stress (measured by serum levels of urinary-8-epi-prostaglndin-F2α and 

glutathione peroxidase) than controls fed a normal chow diet126.   

Preventing the intake or reducing the absorption of dietary fat has been shown to 

be beneficial to control the development of metabolic diseases. Reducing fat absorption 

may alter the outcomes of HFD feeding. Patients with obesity receiving120 mg three 

times/day of Orlistat(a drug that acts as a lipase inhibitor, preventing the digestion and 

then, absorption of dietary fat) for one year had significant reduction of body weight in 
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association with decrease in levels of vitamin E (VE) and β-carotene, but not VA and 

vitamin  D (VD), compared with those receiving placebo, indicating the essential role of 

fat absorption in the maintenance fat-soluble vitamin homeostasis127.  On the other 

hand, a 12-week treatment of Orlistat (120 mg three times daily) significantly reduced 

the plasma levels of VA and VE in addition to the reductions of body weight and fat 

mass in patients with obesity128. 

2.4.2 Lipophilic vitamins in HFD conditions 

Based on their solubility in aqueous solution, vitamins are classified as either 

hydrophilic or lipophilic. Fat soluble or lipophilic vitamins are VA, VD, VE, and vitamin K 

(VK). They can be stored in the body. Historically, those lipophilic vitamins were 

identified due to the symptoms caused by their deficiencies in animal and human 

studies such as growth cessation in animals for VA and rickets for VD. 

Upon intake, lipophilic vitamins are digested, absorbed and embedded with 

dietary fat, and transported with chylomicrons through circulation. The major component 

of dietary fat, triacylglycerol in chylomicrons is delivered and stored into peripheral 

tissues due to the action of lipoprotein lipase in the body. It seems to be possible that 

the amount of dietary fats and their compositions may affect functions, availability and 

metabolism of lipophilic vitamins, which in turn may affect body health. Here, we try to 

summarize the current understanding and progress of human and animal research work 

regarding the effects of HFD intake on functions and availability of lipophilic vitamins. 

VD is incorporated into micelles and enters enterocytes through passive 

diffusion.  After absorption, VD is then packaged in chylomicrons in enterocytes and 

delivered throughout the body through lymph circulation.  VD synthesized in the skin is 
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transported through the body by VD-binding protein (DBP).  Once VD reaches the liver, 

either through chylomicron remnants removal or DBP, it is hydroxylated to 25-

Hydroxycholcalciferol (25-OH-D3)10,129.  

Within the small intestine, dietary VE is incorporated into micelles.  The pancreas 

secretes esterases that act on VE esters to yield free VE which then enters enterocytes 

through passive diffusion.  In enterocytes, VE is packaged in chylomicrons and 

delivered to the rest of the body through lymph circulation130. 

In intestine, dietary VK is incorporated into mixed micelles comprising dietary 

lipids, bile salts, and products of pancreatic lipases.131   Dietary VK is then absorbed 

into enterocytes through active transport.  VK is then incorporated into chylomicrons 

which will enter lymph circulation for delivery to other parts of the body131.  

Chylomicrons travel through circulation, are embedded into peripheral tissue and 

deposit cargo due to the action of lipoprotein lipase.  Chylomicron remnants are 

eventually taken by the liver where VK is incorporated into VLDL which re-enters 

circulation and can be up taken by osteoblasts.131  

Dietary intervention in humans can cause the change of plasma levels of 

lipophilic vitamins. In participants of a randomized, double-blind, placebo-controlled 

clinical trial, daily intake of 8.8 grams (g) of plant stanol esters for 10 weeks did not 

change serum levels of VA, VD and γ-tocopherol, but reduced the levels of total and 

LDL cholesterol, carotenes and α-tocopherol132. A 2.6 g/day dose also significantly 

reduce total cholesterol (LDL), total TG, and carotenes levels, but not VA and VE133.  In 

a moderately hypercholesterolemic population, sitostanol ester (3 g/day) for a year 
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significantly reduced the plasma levels of α-tocopherol and carotenes in association 

with the reduction of cholesterol, but not VA and VD levels134.  On the other hand, short 

term (2-7 days) intake of HFD in human, did not affect the plasma levels of cholesterol, 

TG, carotenes and VE135. 

The effects of VA in HFD feeding have been explored in animal models. 

Supplementation of additional VA in HFD caused further increase of plasma TG levels 

and expression levels of genes for adipocyte differentiation in rats already fed a HFD136.   

On the other hand, in male mice, a supplementation of VA (20IU /g of diet) in a HFD 

increased plasma levels of IL-18 and macrophage inflammatory protein-1 (MIP-1γ), 

which occurred in a RALDH1 (Aladh1 for gene)-dependent manner137.   

Adverse effects of excessive intake of VA on human and animals have been 

nicely summarized138.   Male Sprague-Dawley rats fed on a high-fat diet supplemented 

with large doses of chitosan have reduction of liver VA and VE, but not VK, levels, 

demonstrating the effects of dietary components on the fat soluble vitamin statuses in 

the body139.  It has been shown that dietary fat and fiber contents affect the VA storage 

in the liver and conversion of β-carotene into retinol in Mongolian Gerbils140. VA 

supplementation down-regulates leptin mRNA in adipose tissue in mice and RA 

stimulates UCP3 mRNA in muscle141. 

For VD to become activated, parathyroid hormone stimulates the kidneys to 

release the enzyme 1α-hydroxylase, which converts 25-OH-D3 to   1α,25-

Dihydroxycholecalciferol (1α,25-(OH)2D3)142.  DBP binds to 1α,25-(OH)2D3 so that it is 

carried to target tissues throughout the body where it can be a ligand for VD receptor 
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(VDR).  1α,25-(OH)2D3 enters cells and binds to VDR causing VDR to form a 

heterodimer with RXR which acts as a transcription factor to regulate gene 

expression10. 

There is an association of reduced serum 25-hydroxyvitamin D (25D) 

concentrations with the development of human obesity143. However, the effect of VD 

supplementation on body weight reduction seemed to be uncertain143. In children (6-10 

year-old), a slight lower value of serum 25D (drop from 26 ng/ml of nonobese to 23 

ng/ml of obese) was also associated with obesity144. A recent randomized controlled 

study using seven doses of VD (400–4800 IU/d) in both lean and obese female subjects 

showed that the rise of blood VD levels is inversely related to the body fat mass, and 

the normalization of blood VD levels is not associated with reduction of body weight in 

obese subjects145.  At this time there appears to be no published research investigating 

the effect of a HFD and VD intake and its plasma level in participants.   

Both male and female VD receptor knockout mice have a lean phenotype and 

demonstrate resistance to HFD-induced obesity regardless whether they are in the 

C57BL/6J or CD1 outbred background146-148. On the other hand, transgenic expression 

of human VDR driven by aP2 promoter in adipose tissue resulted in gains of BM and 

body fat mass in mice149. This phenotype is associated with the elevation of only plasma 

cholesterol level and changes of expression levels of genes for fuel metabolism in fat 

tissues and the skeletal muscle149. 

When SD rats were fed a diet containing low fat (LFD, 10% energy from fat) or 

HFD (45% energy from fat) with normal VD or depleted VD (VDD), rats in HFD-VDD 
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group had higher nonalcoholic fatty liver disease (NAFLD) activity Score (NAS) than 

rats in HFD-VD group. On the other hand, rats in LFD groups are protected to the 

development of NAFLD150. The elevation of NAS in rats of HFD-VDD group is 

associated with change of the expression of genes for hepatic inflammatory and 

oxidative stress, suggesting the protective role of VD to the development of NAFLD150. 

However, feeding HFD (40% energy from fat) in rats for 12 weeks per se did not change 

serum 1,25-dihydroxyvitamin D(3) level, whereas supplementation of lactose (10% of 

the diet weight) significantly reduce VD level and HFD-induced BM gain151. 

VE is a collective term for tocopherols and tocotrienols.  These molecules differ 

in their side chains; tocopherols have a phytol side chain while tocotrienols have an 

unsaturated side chain.  Only four tocopherols and four tocotrienols meet human VE 

requirements10, but in the human body α-tocopherol is the most effective152.  

  VE is of significant interest because it is a lipid soluble antioxidant.  It serves as 

a radical scavenger that protects polyunsaturated fatty acids in membranes and 

lipoproteins against lipid oxidation.  Alpha tocopherol scavenges a radical through 

donating a hydrogen with the resulting alpha tocopherol radical reacting with ascorbate 

to return to its reduced state.152  

It has been observed that overweight subjects (BMI ˃ 27) taking an antioxidant 

supplement (1g vitamin C/800 IU VE) with a high-fat low-carbohydrate diet (63.6 ± 1.6% 

calories as fat) for 8 days had a trend of lower C-reactive protein (30% reduction 

compared to baseline). One the other hand, subjects in the placebo group had a trend 

for higher levels of CRP (50% increase compared to baseline153.  
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 Several studies have been done in animals to determine the effects of VE in 

HFD condition. Feeding of VE did not affect the plasma lipid levels in lean or obese 

mice fed a HFD154. The HFD-induced activation of JNK in rat skeletal muscle was 

attenuated by including antioxidants including vitamin C and VE in Wistar rats155.  Male 

C57BL/6J mice fed a HFD (70% energy from fat) with elevated VE content had 

elevation of α-tocopherol in the liver and adipose tissues, which might be protective 

against lipid peroxidation156.  Supplementation of VE (α-tocopherol) or VD (D3) in HFD 

significantly reduced the plasma level of IL-6, but not IL-10, in HFD-fed male Swiss 

mice157.  Tocotrienol supplementation also reduced damages of feeding high-

carbohydrate and high-fat diet to the heart and liver in Wistar rats158.  A 6-week VE (α-

tocopherol) treatment at a dose of 100 mg/kg daily via oral gavages significantly 

reduced the memory impairment induced by High-fat and High-carbohydrate diet in rats, 

probably through reduction of oxidative stress in the hippocampus159.  Specific increase 

of VE content in mitochondria using a mitochondria-targeted VE derivative, MitoVit E 

(conjugated with triphenylphosphonium cations) has been shown to reduce hepatic 

oxidative stress and inhibit fat deposition in mice160.   

When mice were fed a HFD supplemented with α-tocopherol (VE, 0.9 g/kg of 

diet) and 1,25(OH)2 vitamin D3 (0.05 mg/Kg of diet) for 8 weeks, they had lower plasma 

levels of IL-6, indicating reduction of inflammatory response157. It was suggested that 

these two vitamins inhibit IL-6 production from adipocytes157.   HFD induced obese SD 

rats supplemented with 350mg/kg diet of DL-α-tocopherol acetate exhibited significantly 

less BM and fat weight126. 
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VK is essential in blood clotting and bone formation.  Quinone oxidoreductases 

reduce VK to vitamin K hydroquinone.  Vitamin K hydroquinone serves as a cofactor for 

vitamin K gamma-carboxylase, which catalyzes the carboxylation of certain glutamic 

acid residues, resulting in their activation in blood clotting and bone formation.  A 

reduced VK molecule is converted to vitamin K epoxide and then converted back to VK 

by vitamin K epoxide reductase161.  This reduction and reoxidation of VK coupled with 

glutamic acid carboxylation is referred to as the VK cycle10.  Because VK is recycled in 

the body, human deficiency of VK is rare161. 

Rats fed a HFD diet (45% more energy from fat) rich in corn oil had lower plasma 

VK level than those fed a low fat diet even more VK was present in the HFD, indicating 

the HFD feeding on the plasma level of fat-soluble vitamins162.  Additionally, the liver VK 

levels was reduced in rats fed a low-fat diet with fish oil, but not that fed a HFD (already 

lowered ) with fish oil163. 

2.5 Investigating weight loss in participants who are overweight and obese 

2.5.1 Current recommendations for obesity treatment 

 For the treatment of obesity in adults, comprehensive lifestyle interventions have 

been recommended164.  This consists of diet and physical activity goals, as well as 

behavioral therapy.  Dietary goals to achieve weight loss for adults who are overweight 

and obese should be individualized and include a 500 to 750 Calories/day deficit164.  

Physical activity goals aim to gradually increase the amount of physical activity to at 

least 30 minutes of moderate to vigorous intensity physical activity on as many days as 

possible.  Behavior therapy assists with behavior modification strategies, which are 
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implemented to change participants’ dietary intake and physical activity.  

Recommended behavior modification strategies to assist in changing diet and physical 

activity include stress management, self-monitoring, problem solving, stimulus control, 

cognitive restructuring, time management and social support164.  

2.6.2 Weight loss interventions in adults 

Typically weight loss interventions in adults include dietary changes, physical 

activity goals, and behavior modification.  A low-Calorie diet is currently recommended 

to aid in weight loss164.  The Dietary Guidelines, provided by the USDA, give standard 

recommendations for dietary changes.  For adults, it is recommended that dietary intake 

consists of 45-65% carbohydrates, 10-35% protein, and 20-35% fat123.  Many 

investigations on weight loss will limit participant dietary fat consumption to 30% or less 

of calories from fat165-167.  Current weight loss interventions in adults do not included 

prescriptions for VA intake so it is not well understood how VA intake may be related to 

weight loss. 

2.6 Conclusion 

 Obesity has reached epidemic levels with one third of this country’s population 

considered to be obese1.  This condition increases the risk of development of several 

metabolic diseases2, resulting in higher mortality rates and costs in health care3. This 

problem is multifactorial, with energy imbalance, genetics and environmental factors 

playing a role4-5.   

Previous research indicates that VA may also play a role in the development of 

obesity6.  It is clear that VA plays a role in glucose and lipid metabolism in both animals 
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and humans59-65, 92-116.  While VA intake has been shown to impact obesity 

development, research investigating VA and obesity development in adults is limited, 

with most of the research looking at the effects of excessive VA intake105, 117-118. 

One of the contributions to the obesity epidemic in this country is the Western 

dietary pattern, characterized by a HFD.  Consuming a HFD has been linked to 

increases in BM and risk of metabolic diseases121-125.  The current research on lipophilic 

vitamin in HFD has focused mostly on their protective roles in HFD feeding 

conditions129-153.     

Current recommendations for treatment of obesity in adults include dietary   

changes, physical activity goals and behavior therapy164.  A low-Calorie diet is currently 

recommended to aid in weight loss, with many weight loss interventions limiting fat 

intake to 30% or less of calories consumed164-167.  Currently, weight loss investigations 

in adults do not involve interventions for VA intake.  It is not clear how VA intake may be 

related to weight loss in adults. 

2.6.1 Specific aims 

This thesis includes two parts. The project seeks to answer the following questions:  

Does the presence of VA in the diet have an effect on weight gain while a high-fat, 

obesogenic diet is consumed?  Is the presence of VA in the diet related to successful 

weight loss when a hypocaloric, low-fat diet is consumed? This thesis project incorporated 

two different models to investigate the impact of VA in obesity.  The first is an animal 

model, where animals were fed a high fat diet with the goal of weight gain during dietary 

treatment.  The second model looked at adults, where participants’ fat and energy intake 
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were restricted with the goal of achieving weight loss.  The two experiments examined 

the following aims: 

1. Investigate the contributions of VA intake on obesity development in rats 

fed a high-fat diet (HFD).  

2. Investigate the effects of VA intake on body weight alterations in 

participants during a hypocaloric, low-fat dietary intervention. 

For this thesis project we hypothesized that VA intake will have an effect on 

obesity development when an obesogenic HFD is consumed.  We also hypothesized 

that achievement of 10% weight loss would be related to a lower dietary VA intake when 

weight loss was due to consumption of a hypocaloric, low-fat diet.  

It is important to note the use of different models for the experiments in this 

thesis.  Because one model investigated weight gain and the other investigated weight 

loss, two different mechanisms (weight loss and weight gain), as well as two different 

diets, high-fat and low-fat, were examined.   
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Chapter III 

Effects of Vitamin A in the Body Mass Gain in Sprague-Dawley Rats 
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3.1 Introduction 

 Obesity has become epidemic in this country with one third of Americans 

considered to be obese1.  This epidemic predicts the increased incidence of various 

metabolic diseases2, resulting in higher mortality rates and higher costs in health care3. 

The increases in mortality rates and costs of health care have become an urgent 

problem, so finding solutions must become priority. 

One of the dietary styles contributing to the obesity problem is the western diet 

(High-fat content), which is characterized by a high intake of red and processed meats, 

eggs,  refined grains and sugars, and energy derived from fat, mainly saturated fatty 

acids, which can be as high as 35% of energy intake121,122.  The Dietary Guidelines has 

recommended that dietary fat provide 20-35% of energy124.  It has been reported that 

the fat intake of an average adult is 33% of energy intake124, but it is important to 

recognize that adults may consume more total kcal than recommended so fat intake 

would still be higher than recommended.   

Lipophilic vitamins share the same routes of digestion and absorption as lipids.  

Previous research has established the impact of lipid digestion and absorption on 

lipophilic vitamins.  Obese patients receiving120 mg of Orlistat three times/day (a drug 

that acts as a lipase inhibitor, preventing the digestion and then, absorption of dietary 

fat) for one year had significant reduction of body mass (BM) in association with 

decrease in levels of vitamin E (VE) and β-carotene, but not vitamin A (VA) and VD 

(VD), compared with those receiving placebo, indicating the essential role of fat 

absorption in the maintenance fat-soluble vitamin homeostasis127.  Additionally, a 12-

week treatment of Orlistat (120 mg three times daily) was shown to significantly reduce 
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the plasma levels of VA and VE in addition to the reductions of body weight and fat 

mass in patients with obesity128.  Because VA shares the same routes of digestion and 

absorption as lipids, we hypothesize that VA intake will have an effect on obesity 

development in subjects consuming an obesogenic high-fat diet (HFD). 

Here, we compared the growth current and plasma parameters of rats fed a HFD 

with sufficient amount of VA (HF-VAS) and a HFD without VA (HF-VAD) diet for eight 

weeks.  

3.2 Materials and methods 

3.2.1 Animals and diets 

Male Sprague Dawley (SD) rats were bred at the University of Tennessee at 

Knoxville (a breeding colony since 2012). Our previous investigations of VA in energy 

metabolism have used Zucker fatty rats as a model for obesity6,91  Zucker fatty rats 

develop obesity because they express a missense mutation in the extracellular domain 

of all leptin receptor isoforms168.  For this investigation SD rats were used so that the 

findings can be applied to other strains of rats (protocol# 1582).  

  Animals were kept in the Animal Facility for the Nutrition Department at the 

University of Tennessee.  Facility temperatures are maintained at 70-73 ºF, the humidity 

ranges from 45-65% and has a light and dark cycle in 12 hour increments (with the lights 

on from 6:00 a.m.-6:00 p.m.)  Two to three rats were placed in a single cage and fed ad 

libitum.  Cages were cleaned twice a week and given a fresh enrichment (either a piece 

of PVC pipe or a paper cone).  They were housed in colony cages and fed either a high 

fat diet that is HF-VAD (0 IU/g VA) or HF-VAS (22.1 IU/g VA) after weaning (three weeks 
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of age) for a total of eight weeks.  This period of eight weeks will be sufficient to induce 

VA deficiency.8  The HF-VAS diet had 60% energy from fat.  Average fat intake is close 

to 30% total calories from fat, so the fat content in the experiment is double the average 

fat intake.  The HF-VAD diet was identical to the HF-VAS differing only in VA content.  

Diets for this experiment will be ordered from Harlan. 

BM and food intake (in grams) were recorded weekly6.  BM was measured for each 

rat to the nearest 0.01 gram with a calibrated scale.  Food intake was measured by 

weighing the amount of feed given at the start for the week then subtracting the amount 

remaining at the end of the week and dividing the total by the number of rats that 

consumed the diet to get each rat’s weekly intake.  All procedures were approved by the 

Institutional Animal Care and Use Committee at the University of Tennessee at Knoxville 

(865-946-2574). 

3.2.2 Collection of plasma and tissue samples 

At the end of eight weeks of dietary treatment, plasma glucose was measured 

with an assay kit (Procedure No. 1070) from STANBIO Laboratory (Boerne, Texas).  

Rats were euthanized with CO2 and spinal cord dislocation in accordance with 

regulations.  Hepatic blood was collected and centrifuged at 3,000 rpm for 30 minutes to 

collect plasma.  Liver, white adipose, brown adipose were collected, weighed, snapped 

frozen in liquid nitrogen and stored at -80˚C. 

Before euthanization, glucose level of the tail tip whole blood was measured 

using a glucose meter (Roche; Tucson, AZ).  Tail blood (less than 10 ul) was collected 

with 25 G needle.  Once rats were euthanized, hepatic blood was collected from the 
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vena cava, then the liver and white adipose were collected.  Brown adipose was 

collected from the back of the neck.  Tissues were weighed on a calibrated scale to the 

nearest 0.01 gram, wrapped in aluminum foil and frozen with liquid nitrogen.   Plasma 

and tissue samples were then stored at -80 º C before used. 

Measuring glucose from hepatic blood was accomplished with the technique 

described Trinder et al169.  With this method, glucose is oxidized in the presence of 

glucose oxidase.  The hydrogen peroxide formed reacts, under influence of peroxidase 

with phenol and 4-aminoantipyrine to form a red-violet quinine complex.   The intensity 

of the color is proportional to glucose concentration.  Absorbance at 500 nm wavelength 

is then measured with a spectrometer from Glomax (Madison, WI).  The glucose 

reagent contains phosphate buffer (200 mmol/L), phenol (4 mmol/L), 4-Aminoantipyrine 

(0.2 mmol/L), glucose oxidase (˃15 KU/L) and peroxidase (˃1.2 KU/L). 

For glucose measurement, glucose reagent stored at 2-8 º C, was removed from 

4°C refrigerator and allowed to warm at room temperature for 30 minutes.  Plasma 

samples were removed from storage and placed on ice to thaw.  For each standard, 

sample and control, 1.0 mL reagent was added to cuvettes and warmed to 37ºC for 5 

minutes.  10μL of each sample was added to its respective cuvette, mixed gently and 

returned to 37ºC incubation.  After five minutes of incubation, absorbance of samples 

was measured.  Glucose for each sample was calculated as 

Glucose (
mg

dL
) =  

Absorbance of unknown

Absorbance of standard
*100Glucose (

mg

dL
) =  

Absorbance of unknown

Absorbance of standard
*100  
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3.2.3 Statistics  

Data was analyzed using independent-samples t test, as seen in previous 

research6,40,149.  Student t test was conducted to compare means of food intake, liver 

mass, white adipose mass, brown adipose mass, and blood glucose.  Differences were 

considered statistically significant at p < 0.05. 

For comparing BM over time, a Bonferroni correction was used to calculate the p-

value to determine if differences were considered statistically significant. BM for the 

groups was measured at baseline and then once a week for the eight week dietary 

treatment.  The Bonferroni correction was calculated as 0.05 divided by 9 (total time 

points BM was measured).  Differences in BM over time were considered statistically 

significant at p < 0.0056. 

3.3 Results  

Rate of BM gain was significantly less in rats fed HF-VAD starting at 7 weeks  

 To determine the effects of VA status on the gain of BM in SD rats, they were fed 

a HF- VAS or a HF-VAD diet for 8 weeks after weaning.  Animals were weighed once a 

week for eight weeks.  There was no significant difference in starting BM   between HF-

VAS and HF-VAD groups.  As shown in Figure 1, rats fed a HF-VAD diet grew at a 

similar rate as those fed a HF-VAS diet did for the first 6 weeks.  Starting at week 

seven, there was an observed significant difference in BM gain between the HF-VAS 

and HF-VAD groups, with the HF-VAD group weighing less.  This trend continued for 

the remainder of the diet treatment, with increasing significance.  This trend can be 

seen in Figure 1.  The BM of both groups continued to rise throughout the 8 week study 
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period.  Of note, without the Bonferroni correction, significant difference in BM was 

detected at week 6 of dietary treatment. 

Figure 2 shows the weekly food intake of the rats fed the perspective diet. Of note, the 

total food intake for both groups was not significantly different.  These results show that 

SD rats fed a HF-VAD were able to gain BM for 8 weeks.  It was not until week seven 

that the rate of BM gain began to differ significantly between HF-VAD and HF-VAS.  

This suggests that the VA storage of SD rats at weaning is sufficient to support the BM 

gain for 6 weeks without any significant reduction in the rate of BM gain.  These results 

demonstrate that the deficiency of dietary VA slowed down the rapid BM gain of SD rats 

fed HFD. 
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Figure 1 Comparison of Body Mass gain over 8 weeks of Sprague-Dawley rats 

receiving a high-fat diet and vitamin A sufficient diet (HF-VAS) and Sprague Dawley rats 

receiving a high-fat and vitamin A deficient diet (HF-VAD)(* for comparing the two 

dietary groups, all p < 0.0056).  VAD- Vitamin A Deficient; VAS- Vitamin A Sufficient  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Total amount of diet consumed over 8 weeks of Sprague Dawley rats fed a 
high-fat and vitamin A sufficient diet (HF-VAS) and Sprague Dawley rats fed a high-fat 
and vitamin A deficient diet (HF-VAD)  
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VA deficiency resulted in morphological and metabolic changes in SD rats  

The effects of VA deficiency on SD rat metabolism were analyzed after they had 

been fed a HF-VAD or a HF-VAS for 8 weeks.  As seen in Table 1, the initial BM of the 

SD rats (3 weeks after birth as weaning) fed a HF-VAD diet was similar to the HF-VAS 

groups.  After 8 weeks of diet treatment, HF-VAD group had significantly lower BM 

(267.5 ± 32.7 g vs. 386.4 ± 37.7 g).  This demonstrates the reduced somatic growth and 

VA deficiency as shown previously8. At the end of the eight weeks, liver, white adipose 

and brown adipose were collected and weighed.  There was an observed significant 

difference between the groups for liver and white adipose weight (all p<0.05), with the 

HF-VAD group having less mass for liver and white adipose.  While there was not a 

significant difference for brown adipose mass (p = 0.070).  All of these results 

demonstrate the impact of VA deficiency in SD rats after 8 weeks on the HF-VAD diet.  
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Table 3 Comparison of measures for Sprague Dawley rats receiving a high-fat vitamin 
A sufficient (HF-VAS) diet and Sprague Dawley rats receiving high-fat vitamin A 
deficient (HF-VAD) diet  

Diet HF-VAD(mean±SD) (n) HF-VAS(mean±SD)(n) 

Start day BM (g) 45.5 ± 6.5 (9) 44.7 ± 3.43 (6) 

End day BM (g) 267.5 ± 32.7 (9) 386.4 ± 37.7 (6)* 

Liver mass (g) 9.01 ± 1.42 (9) 14.88 ± 1.91 (5)* 

Liver/BM ratio 1:29.7 (9) 1:25.9 (5) 

White adipose mass (g) 2.16 ± 0.91 (7) 3.8 ± 1.25 (6)* 

White adipose/BM ratio 1:123.87 (7) 1:101.68 (6) 

Brown adipose mass (g) 0.31 ± 0.099 (7) 0.45 ± 0.13 (6) 

Plasma glucose (mg/dl) 479.8 ± 179.2  (5) 434.5 ± 41.9  (4) 

Plasma cholesterol (mg/dl) 530.6 ± 12.3 (5) 537.5 ± 17.5 (4)  

Plasma triglyceride (mg/dl) 60.4 ± 30.8 (5) 70.0 ± 16.3  (4) 

 

Note: BM-body mass, HF-VAD-high fat vitamin A deficient, HF-VAS- high fat vitamin A 
sufficient 
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3.4. Discussion 

The growth curves of SD rats fed a HF-VAD or a HF-VAS diet demonstrate that 

VA content in the diet significantly impacted obesity development (BM gain) while 

consuming an obesogenic diet.  Lack of VA in the diet began to reduce the rate of BM 

gain starting at week 7 for rats consuming the HF-VAD diet.  The rats fed a HF-VAD diet 

still gained BM at a slower rate for the remaining week of dietary treatment.  This 

difference could not be explained by any change in total energy intake because both 

HF-VAD and HF-VAS groups consumed similar total calories for the 8 week dietary 

treatment.  Our previous experiments have shown that Zucker Lean and Zucker Fatty 

rats consuming a normal chow diet deficient in VA would reach a peak BM and then 

would start to lose BM with continued dietary treatment6 in contrast to the current 

experiment where the VAD group still gained BM throughout the 8 weeks of dietary 

treatment.  A possible explanation for this difference is the high caloric content of the 

HF-VAD.  Another reason for the difference could be that VA storage in SD rats differs 

from VA storage in Zucker Lean and Zucker Fatty rats. 

The net white fat mass was significantly lower in HF-VAD subjects than HF-VAS 

subjects.  It has been demonstrated that rats fed a VAD diet had a loss of carcass fat, 

along with a reduction of BM170.  These findings indicate that VA status plays a role in 

adiposity. 

The net liver mass was significantly lower in HF-VAD subjects than HF-VAS 

subjects.  On the other hand, there was no significant difference found in liver/BM ratio 

between SD rats fed a HF-VAD diet and SD rats fed a HF-VAS diet.  A possible 
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contribution to the lower liver mass observed in the HF-VAD rats compared to the HF-

VAS rats is depleted hepatic glycogen content.  It has been observed that rats fed a VA-

deficient diet had depleted hepatic glycogen content60.  In that study it was determined 

that the depletion of hepatic glycogen was caused by the reduction of glycogenesis from 

trioses, rather than directly from glucose60.  It was shown that the depletion in VAD rats 

was not due to reduced energy intake, as pairfed rats with equal energy intake had 

higher hepatic glycogen content60.  This is comparable to the findings in the current 

study, as shown in Figure 2, SD rats fed a HF-VAD diet had equal total energy intake 

for the 8 week diet treatment as the SD rats receiving a HF-VAS diet. 

No significant difference was detected in the plasma glucose levels between the 

HF-VAD and HF-VAS groups.  Previous research from our lab showed a significant 

difference in the plasma glucose of Zucker Fatty rats fed a normal chow VAD compared 

to their VAS counterparts6.  Differences in results could possibly be attributed to the use 

of a different strain of rat.  SD rats may have greater storage of VA at weaning than 

Zucker Fatty rats and therefore may not have the same impact from a VAD diet on 

glucose metabolism. Alternatively, this difference may be caused by the presence of 

high fat content in the diets, which probably provide enough fatty acid for the muscle to 

use. This may spare glucose and prevent the drop of glucose in HF-VAD rats. 

Additionally, no significant difference was found in the plasma cholesterol and 

plasma triglycerides between the HF-VAD and HF-VAS groups.  Previous research from 

our lab showed a significant difference in the plasma triglycerides of Zucker Fatty rats 

fed a normal chow VAD compared to their VAS counterparts6.   An explanation for this 

difference could be the high fat content of the diet treatment used in this experiment. 
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3.5 Conclusion 

 The current research on lipophilic vitamins in HFD has focused on their 

protective roles in HFD feeding conditions. How HFD affects homeostasis of lipophilic 

vitamins remains to be an open question. Our current findings support the assertion that 

VA status plays a key role in adiposity development in HFD conditions 
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Chapter IV 

Comparison of Dietary Vitamin A Consumption in Participants with 10% Body 

Weight Loss and Those without 10% Weight Loss in a Randomized Clinical Trial 
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4.1 Introduction 

Obesity continues to be a serious national problem with one third of the population 

considered to be obese1.  This condition increases the risk of development of various 

metabolic diseases2 such as diabetes and hyperlipidemia, resulting in higher mortality 

rates and higher costs in health care3.  Additionally, obesity has been linked to decreased 

productivity in the workplace, which can indirectly increase healthcare costs3.  The 

increases in mortality rates and costs of health care have become an urgent problem, 

which finding solutions must become priority.   

The problem of obesity is thought to be caused by positive energy balance, 

meaning that energy intake is greater than energy output4.  While over nutrition seems to 

be an obvious cause of obesity development, the role of individual micronutrients has not 

been revealed. Previous research indicates that vitamin A (VA) may play a role in the 

development of obesity6.  It has be demonstrated that patients with promyelocytic 

leukemia treated with all-trans retinoic acid (RA) experienced increases in body mass 

(BM) and plasma cholesterol105.  While this demonstrates the effects of excess VA on BM 

gain in humans, it is currently not understood how dietary VA plays a role in weight loss, 

and its role when a hypocaloric, low-fat diet is consumed. 

This project aims to investigate the effects of VA intake on BM alterations in 

participants during dietary interventions. This will be achieved by comparing dietary VA 

intake between participants who successfully lost 10% weight and those who did not at 6 

months in a lifestyle intervention.  Based on previous research, we hypothesized that 

participants who achieved 10% weight loss will have consumed significantly less dietary 
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VA than those who did not achieve 10% weight loss while consuming a hypocaloric, low-

fat diet.   

4.2 Methods 

4.2.1 Study design 

 A secondary data analysis as conducted using data collected from a previous 

published lifestyle intervention trial which examined a reduced variety dietary 

prescription165.  In the original study, 202 participants who were overweight and obese 

were randomly assigned 1 of 2 conditions:  Limited Variety (LV) or Lifestyle.  Both of the 

treatment conditions were given a standard low-calorie, low-fat diet prescription (1200 

kcal/day for participants weighing less than 200 lbs at baseline and 1500 kcal/day for 

participants weighing greater than 200 lbs at baseline, with fat being restricted to 30% of 

energy intake), a physical activity prescription consisting of 200 minutes of moderate-

intensity physical activity per week and walking 10,000 steps per day, and a cognitive 

behavioral intervention to aide in dietary and physical activity behavior changes165.  The 

LV was also given a limited variety prescription, designed to decrease the number of 

non-nutrient-dense, energy-dense foods (NND-EDF) (for example ice cream, cookies, 

chips) consumed to only 2 selected by the participants165.  The NND-EDFs also 

included modified versions such as reduced sugar and sugar free ice cream.  

Participants in the Lifestyle group did not receive the limited variety prescription. 

 Participants participated in the intervention for 18 months, which provided 48, 60 

minute group sessions.  These sessions, modeled after lessons used in the Diabetes 

Prevention Program, covered lessons on behavioral and cognitive skills to aide with 
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dietary and physical activity behavior changes.  During the first 6 months, which was 

considered the weight loss phase, participants had weekly sessions.   Months 7-18 

were considered the maintenance phase so the participants had two sessions a 

month165.  Measures were taken at baseline, 6, 12, and 18 months. 

 At the end of the study it was found that the LV group consumed less variety of 

NND-EDFs and less overall energy intake daily from these foods than the Lifestyle 

group at 6, 12, and 18 months165.  While the LV group consumed less total energy than 

the Lifestyle group at 6 months, there were no significant differences between the 

groups in energy intake at 12 and 18 months165.  Weight loss did not differ significantly 

between groups and at 18 months both groups lost approximately 9% of body weight165. 

 The current study was a secondary data analysis. The time point examined was 

month 6.  For analysis, the participants were divided into two groups, successful weight 

loss at 6 months (loss of 10% or more of body weight), and unsuccessful weight loss at 

6 months (loss of less than 10% of body weight).  Weight loss of 5-10% in overweight 

and obese subjects has been shown to improve risk factors for diseases related 

obesity171.   The dependent variables that were investigated are VA intake.  Variables 

for VA included Total Vitamin A Activity International Units, Beta Carotene provitamin A 

carotenoid, Total Vitamin A Activity Retinol Equivalents, Beta Crytoxanthin provitamin A 

Carotenoid, Alpha Carotene provitamin A carotenoid. 

4.2.2 Participants 

In the initial study, participants were recruited from Providence, RI and Knoxville, 

TN.  Eligibility criteria included aged 21-65 years, a BMI between 27 and 45 kg/m2, and 
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the ability to walk 2 blocks165.  Participants were excluded if they reported a heart 

condition, chest pain, or loss of consciousness; were taking weight loss medications or 

participating in another weight loss intervention; had undergone bariatric surgery; were 

pregnant or lactating, or less than 6 months post-partum or planning to become 

pregnant during the study; were allergic to foods being used in the taste-test measures 

conducted during the study; or were consuming less than 5 different types of NND-

EDFs165.  For the current secondary data analysis, only participants with complete 

dietary data and weight measurements at baseline and 6 months were included in the 

analyses. 

4.2.3 Measures 

Measures were collected by trained research staff blinded to the randomization 

assignment at baseline and 6 months in a research setting.  Demographic measures, 

such age and race, were collected through a self-report survey at baseline165.  Of note, 

all of the measures collected for participants were not collected at the same time of the 

year.  The study collected measures from 6 different cohorts over time. 

Anthropometrics 

Participant height was measured at baseline and weight measures were taken at 

baseline and 6 months to calculated BMI.  Height measurements were recorded to the 

nearest millimeter at baseline using a stadiometer165.  Weight was measured with a 

calibrated scaled, while wearing light street clothes, and recorded to the nearest 0.05 

kg165.  For this study, percentage weight loss was used to assess weight loss.   

Percentage weight loss was calculated as: 
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𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 % =  
𝑊𝑒𝑖𝑔ℎ (6 𝑚𝑜𝑛𝑡ℎ𝑠) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
∗ 100% 

 

Dietary intake 

Looking at participant dietary intake, three random 24-hour dietary recalls were 

collected by phone during a 1 week period at 0 and 6 months.  Recalls were conducted 

by interviewers from the Cincinnati Center for Nutritional Research and Analysis trained 

and blinded to the intervention and interventions assignment165. 

The Nutrition Data System Software for Research developed by the Nutrition 

Coordinating Center, University of Minnesota, Minneapolis, MN was used to collect and 

analyze the 3-day food records.  The multiple-pass method was used to collect the data.  

There are 5 phases for this method of recall of dietary data.  In the first phase, the 

participant tells the reviewer all of foods and beverages that were consumed.  The 

second phase occurs when the reviewer reviews the list with the participant.  In the third 

phase, the interviewer receives detailed information of the foods and beverages 

consumed.  In the fourth phase, participants were given 2-dimensional models of food 

portions sizes to assist with accurate reporting.  In the fifth phase the reviewer reviews 

the entered information with the participants to ensure completeness. 

Variables for dietary intake were calculated as means of the three days.  

Variables include VA as Total Vitamin A Activity International Units, Beta Carotene 

provitamin A carotenoid, Total Vitamin A Activity Retinol Equivalents, Beta Crytoxanthin 

provitamin A Carotenoid, Alpha Carotene provitamin A carotenoid. 
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4.2.4 Statistics 

 Independent t-tests and chi-squared tests were conducted to compare 

demographics and anthropometrics measures between participants included in the 

secondary data analyses and those not included.  A significant difference was found 

between those included and those not included in the analyses for education, which 

was entered as a covariate in the remaining analyses. 

For participants included in this secondary analysis, independent t-tests and chi-

squared tests were used to compare demographics and baseline anthropometrics, and 

baseline dietary intake of selected VA variables between those who had successful 

weight loss at 6 months and those who did not have successful weight loss at 6 months.  

No significant differences were found between the two groups for baseline measures.   

To determine if there was a significant difference in the amount of dietary VA 

consumed at 6 months between participants with successful weight loss and 

participants who did not have successful weight loss, a mixed analysis of covariance 

(ANCOVA) was conducted, with weight loss % (10% weight loss at 6 months and less 

than 10% weight loss at 6 months) as the between-subjects variable and time (6 

months) as the within-subjects variable, and education as a covariate. 

All analyses were conducted using SPSS Statistics 22.0, with alpha level set at 

0.05. 
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4.3 Results 

Baseline participant characteristics 

Baseline characteristics for those included in the analyses (n= 113) compared to 

those that were excluded from the analyses (n=89) are shown below in Table 4.  No 

significant difference was found in weight, BMI, gender, race, ethnicity, marital status, 

age, and group assignment.  A significant difference was found between these groups 

for education, with those included in the analyses having a higher percentage of having 

some college education or higher than those not included in the analyses (91.2 % vs. 

83.1 %).  Therefore, education was entered as a covariate in all subsequent analyses. 

Baseline characteristics for the successful weight loss and unsuccessful weight 

loss groups are shown in Table 5 below.  Participants were 51.9 ± 8.8 years, 

predominately white (94.7%), female (59.6%), with some college education (91.2%), 

married (75.2%) and not Hispanic (100%), and were obese (BMI = 35.0 ± 4.5). No 

significant differences were detected for baseline characteristics and self-reported 

dietary intake of VA between the groups.  

Comparison of self-reported dietary intake of VA at 6 months between groups 

 There was no significant difference found for self-reported dietary intake of any of 

the VA variables at 6 months between participants with successful weight loss and 

participants with unsuccessful weight loss.  See Table 6 below for comparison of means 

of dietary VA variable values for participants. 
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Table 4 Baseline characteristics for participants included vs. those not included in 
secondary analyses 

Variable Not Included (n=89) Included (n=113) 

Age (y) 51.9 ± 8.8 51.9 ± 8.8 

Weight (lb) 218.9 ± 38.1 223.3 ± 40.2 

BMI (kg/m2) 34.4 ± 3.9 35.0 ± 4.5 

Female (%) 55.1 59.3 

White (%) 88.8 94.7 

Non-Hispanic (%) 98.9 100 

Some college education or higher (%)* 83.1 91.2 

Married (%) 71.9 75.2 

Lifestyle assignment (%) 48.3 52.2 

 

Note: *Significant at p<0.5 
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Table 5 Baseline characteristics and self-reported dietary intake of vitamin A for 
participants with successful weight loss and participants with unsuccessful weight loss 
(M± SD) 

Variable Successful 

weight loss (n = 

66) 

Unsuccessful 

weight loss (n 

= 47) 

Age (y) 53.3 ±8.3 50.0 ±9.2 

Weight (lb) 220.6 ± 40.6 227 ± 39.8 

BMI (kg/m2) 34.7 ± 4.6 35.5 ± 4.4 

Female (%) 59.1 59.6 

White (%) 93.9 95.7 

Non-Hispanic (%) 100 100 

Some college education or higher (%)* 92.4 89.4 

Married (%) 70.0 83.0 

Lifestyle assignment (%) 48.5 57.4 

Beta Carotene provitamin   A carotenoid         

(mcg) 

3724.0 ± 2984.2 2815.6 ± 

2632.9 

Total Vitamin A Activity  Retinol Equivalents 

(mcg) 

1304.6 ± 770.9 1006.9 ± 

528.8 

Total Vitamin A Activity  Retinol Activity 

Equivalents (mcg) 

959.0 ± 571.2 748.5 ± 

362.4  

Beta Crytoxanthin  provitamin A carotenoid 

(mcg) 

149.0 ± 175.5 97.8 ± 

110.8 

Alpha Carotene provitamin  A carotenoid 

(mcg) 

692.7 ± 737.7 472.8 ± 

511.5 

Total Vitamin A Activity  International Units 

(IU) 

8956.2 ± 5897.4 6802.5 ± 

4692.8 

 

Note: y-years old; lb- pounds; kg-kilograms; m- meters; mcg-microgram; IU- 
International Units 

 



www.manaraa.com

55 

 

Table 6 Comparison of means of dietary vitamin A between participants with successful 
10% weight loss and participants with less than 10% weight loss (M± SD) 

Variable Successful weight 

loss (n = 66) 

Unsuccessful 

weight loss (n 

= 47) 

Beta Carotene provitamin A carotenoid 

(mcg) 

3625.54± 3094.07 3109.14± 

3171.55 

Total Vitamin A Activity Retinol Equivalents 

(mcg) 

1022.07± 579.31 989.20± 590.79 

Total Vitamin A Activity Retinol Activity 

Equivalents (mcg) 

688.91± 341.65 701.83± 364.68 

Beta Crytoxanthin provitamin A carotenoid 

(mcg) 

124.28± 125.26 122.48± 119.17 

Alpha Carotene provitamin A carotenoid 

(mcg) 

619.82± 595.45 555.37± 556.15 

Total Vitamin A Activity International Units 

(IU) 

7848.80± 5501.16 7129.18± 

5542.82 

 

Note: mcg- microgram; IU- International Units 
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4.4 Discussion  

           The purpose of this investigation was to examine the relationship between 

dietary VA and weight loss in participants in a lifestyle intervention.  This was 

accomplished by comparing the amount of VA consumed between participants who 

successfully lost 10% weight and those who did not while consuming a hypocaloric, low-

fat diet.  Since no significant difference was detected in amount of VA consumed 

between the groups, the results indicate that the amount of VA consumed in a weight 

loss intervention where participants are experiencing a negative energy balance and 

restricting fat did not have a relationship with weight loss.     

          There is limited human research investigating the effect of VA on obesity and the 

previous research on the relationship between VA intake and obesity in humans has 

mostly focused on the effects of excessive VA intake, and VA influence on weight gain, 

rather than loss105,117-118.  There is a need for further investigation on how VA intake 

impacts weight loss. 

           In contrast to the first experiment for this thesis project, this experiment used a 

human model where the goal for the participants was weight loss rather than weight 

gain, as seen in the animal experiment.  The diets also differed in that the participants 

were instructed to follow a hypocaloric, low-fat diet as opposed to the obesogenic, high-

fat diet provided to the animal subjects.  Dietary fat is essential for absorption of VA, 

and restriction of fat may have played a role in the results of this experiment.  Even if 

participants consumed VA rich foods, if they did not also consume adequate fat, then 

the VA would not have been absorbed to exert its physiological effects.   
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           One limitation of this study would be that the sample was homogenous in race 

and ethnicity.  Another limitation would be the use of self-reported dietary data.  The 

sample of those included in the analysis was also greatly reduced due to participants 

being excluded from the analysis from lack of complete dietary data.  Also, it is 

important to note the large variation of average VA intake (based on a large standard 

deviation) for participants in both groups.  Additionally, since the study design was a 

secondary data analysis conclusions on cause and effect cannot be made. 

4.5 Conclusion 

         Our findings indicate that VA intake does not play a role in weight loss.  Since the 

weight loss intervention called for a restriction on fat intake, absorption of VA may have 

been impacted.  If VA absorption was impaired, it would not be able to carry out its 

physiological activities.   

         It is important to note the contrast between the experiments used for this thesis 

project.  The first experiment used an animal model to examine the relationship 

between VA intake and weight gain (obesity development) in HFD feeding conditions, 

while the second experiment used a human model to look at the relationship between 

VA intake and weight loss with a diet that was hypocaloric and low-fat.   Even if the 

results of the animal experiment indicate that VA plays a role in weight gain while 

consuming an obesogenic HFD, this does not mean that VA plays a role in weight loss 

when consuming a diet that is hypocaloric and low-fat.  It is possible that fat content in 

the diets for these experiments played a role in the results we have seen.  The 

relationship between VA intake and weight management may depend on the fat content 
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of the diet.  Another explanation for the results could be the negative energy balance 

state used in this experiment.  It is possible that VA does not influence weight 

management when a hypocaloric diet is implemented.  
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Chapter V  

Discussion and Future Perspectives 
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5.1 Conclusion 

This thesis project incorporated two different models to investigate the impact of 

VA in obesity.  The first was an animal model, where animals were fed a high-fat diet 

with the goal of weight gain during dietary treatment.  The second model looked at 

humans, where participants’ fat and energy intake were restricted with the goal of 

achieving weight loss during the intervention.  Because one model investigates weight 

gain and the other investigates weight loss, two different models (weight loss and 

weight gain), and two different diets (high-fat and low-fat) were examined.   

We have known that vitamin A (VA) status affects plasma lipids levels, which is 

supported by the results of the animal experiment.  The current research on lipophilic 

vitamin in high-fat diet (HFD) has focused mostly on the protective roles of lipophilic 

vitamins in HFD feeding conditions.  How HFD affects homeostasis of lipophilic vitamins 

remains to be an open question.  Knowing the essentiality of lipophilic vitamins for 

general healthy, it can be easy to assume that their uptake is helpful in a variety of 

dietary conditions.  However, their uptakes share the same route as dietary lipids.  

Mutual effects of dietary lipophilic vitamins and other lipid molecules on each other’s 

digestions, absorption and functions may exists.  Our current findings support the 

assertion that VA status plays a key role in adiposity in HFD conditions.  It is feasible to 

assume that transport, storage and metabolism of these lipophilic vitamins alter with the 

change of diets or metabolic states of a subject or population.  Additional studies are 

needed to understand the impacts of dietary components on the homeostasis of 

lipophilic vitamins. Additional biochemical studies are need to analyze all the samples 

collected. The expression levels of glucose and lipid metabolic enzymes in the 
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metabolic active tissues and organs, such as the liver, adipose tissue and muscle will 

certainly reveal the metabolic changes introduced by the elimination of VA in a diet of 

high-fat setting. 

Since our current findings showed no significant difference of VA intake between 

participants who had successfully lost 10% weight and those who had not, this indicates 

that intake of lipophilic vitamins was not related to weight loss.  It has been established 

that excessive VA intake can contribute to BM gain in participants without changes in 

caloric intake, but it is not known if VA intake plays a role in weight loss when a 

hypocaloric, low-fat diet is consumed.  While the results of the animal experiment 

indicate that VA plays a key role in weight gain in HFD conditions, the relationship (if 

any) between VA intake, fat intake, and weight loss remains to be an open question.  

Additional studies are needed to understand the role VA plays in the process of weight 

loss.  The amount of fat consumed could have affected the results of the current 

experiment.  Dietary fat is required for VA absorption.   It is possible that the effects of 

VA on weight management may depend on the fat content of the diet consume. 
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